Persistence of strong and switchable ferroelectricity despite vacancies
نویسندگان
چکیده
Vacancies play a pivotal role in affecting ferroelectric polarization and switching properties, and there is a possibility that ferroelectricity may be utterly eliminated when defects render the system metallic. However, sufficient quantitative understandings of the subject have been lacking for decades due to the fact that vacancies in ferroelectrics are often charged and polarization in charged systems is not translationally invariant. Here we perform first-principles studies to investigate the influence of vacancies on ferroelectric polarization and polarization switching in prototypical BaTiO3 of tetragonal symmetry. We demonstrate using the modern theory of polarization that, in contrast to common wisdom, defective BaTiO3 with a large concentration of vacancies (or , or ) possesses a strong nonzero electric polarization. Breaking of Ti-O bonds is found to have little effect on the magnitude of polarization, which is striking. Furthermore, a previously unrecognized microscopic mechanism, which is particularly important when vacancies are present, is proposed for polarization switching. The mechanism immediately reveals that (i) the switching barrier in the presence of is small with ΔE = 8.3 meV per bulk formula cell, and the polarization is thus switchable even when vacancies exist; (ii) The local environment of vacancy is surprisingly insignificant in polarization switching. These results provide profound new knowledge and will stimulate more theoretical and experimental interest on defect physics in FEs.
منابع مشابه
Role of an Oxygen Vacancy Nanostructure on the Switchable Photovoltaic Effect in BiFeO3
In all oxide compounds, oxygen vacancies intrinsically exist and their role and impact on materials’ properties have been studied for several decades. Mostly they have been considered as defects that disturb a ‘perfect world’. Nowadays, however, researchers consider them as new parameters for controlling functionalities of oxide compounds such as quantum and energy materials; here, the multifer...
متن کاملMaterial Study of High Performance Single Crystal Ferroelectric Nanowires
Ferroelectric materials, which exhibit switchable polarization and are piezoelectric, have been extensively studied because of their applications in nonvolatile memory and energy harvesting devices.[1,2] Recently, ferroelectric nanostructures have attracted great interest as they provide a platform to investigate the size effect of ferroelectricity and enable integration with prevailing miniatu...
متن کاملMagnetoelectric Response in Multiferroic SrFe12O19 Ceramics
We report here realization of ferroelectricity, ferromagnetism and magnetocapacitance effect in singleSrFe12O19ceramic at room temperature. The ceramics demonstrate a saturated polarization hysteresis loop, two nonlinear I-V peaks and large anomaly of dielectric constant near Curie temperature, which confirm the intrinsic ferroelectricity of SrFe12O19 ceramicswith subsequent heat-treatment in O...
متن کاملRoom-temperature ferroelectricity in CuInP2S6 ultrathin flakes
Two-dimensional (2D) materials have emerged as promising candidates for various optoelectronic applications based on their diverse electronic properties, ranging from insulating to superconducting. However, cooperative phenomena such as ferroelectricity in the 2D limit have not been well explored. Here, we report room-temperature ferroelectricity in 2D CuInP2S6 (CIPS) with a transition temperat...
متن کاملPrediction of a native ferroelectric metal.
Over 50 years ago, Anderson and Blount discussed symmetry-allowed polar distortions in metals, spawning the idea that a material might be simultaneously metallic and ferroelectric. While many studies have ever since considered such or similar situations, actual ferroelectricity--that is, the existence of a switchable intrinsic electric polarization--has not yet been attained in a metal, and is ...
متن کامل